Securing blockchain-based timed data release against adversarial attacks1

Author:

Wang Jingzhe1,Palanisamy Balaji1

Affiliation:

1. School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, USA

Abstract

Timed data release refers to protecting sensitive data that can be accessed only after a pre-determined amount of time has passed. While blockchain-based solutions for timed data release provide a promising approach for decentralizing the process, designing an attack-resilient timed-release service that is resilient to malicious adversaries in a blockchain network is inherently challenging. A timed-release service on a blockchain network is inevitably exposed to the risk of post-facto attacks where adversaries may launch attacks after the data is released in the blockchain network. Existing incentive-based solutions for timed data release in Ethereum blockchains guarantee protection under the assumption of a fully rational adversarial environment in which every peer acts rationally. However, these schemes fail invariably when even a single participating peer node in the protocol starts acting maliciously and deviates from the rational behavior. In this paper, we propose a systematic solution for attack-resilient and practical blockchain-based timed data release in a mixed adversarial environment, where both malicious adversaries and rational adversaries exist. We first propose an effective uncertainty-aware reputation measure to capture the behaviors of the peer involved in timed data release activities in the network. In light of such a measure, we present the design of a basic protocol that consists of two critical ingredients, namely reputation-aware peer recruitment and verifiable enforcement protocols. The former, prior to the start of the enforcement protocols, performs peer recruitment based on the reputation measure to make the design probabilistically attack-resilient to the post-facto attacks. The latter is responsible for contractually guarding the recruited peers at runtime by transparently reporting observed adversarial behaviors. However, the basic recruitment design is only aware of the reputation of the peers and it does not consider the working time schedule of the participating peers and as a result, it results in lower attack-resilience. To enhance the attack resilience further without impacting the verifiable enforcement protocols, we propose a temporal graph-based reputation-aware peer recruitment algorithm that carefully determines the peer recruitment plan to make the service more attack-resilient. In our proposed approach, we formally capture the timed data release service as a temporal graph and we develop a novel maximal attack-resilient path-finding algorithm on the temporal graph for the participating peers. We implement a prototype of the proposed approach using Smart Contracts and deploy it on the Ethereum official test network, Rinkeby. For extensively evaluating the proposed techniques, we perform simulation experiments to validate the effectiveness of the reputation-aware timed data release protocols as well as our proposed temporal-graph-based improvements. The results demonstrate the effectiveness and strong attack resilience of the proposed mechanisms and our approach incurs only a modest gas cost.

Publisher

IOS Press

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Timed Data Release Using Smart Contracts;2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS);2024-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3