Influence of seat lumbar support adjustment on muscle fatigue under whole body vibration: An in vivo experimental study

Author:

Guo Li-Xin1,Dong Rui-Chun1,Yuan Sheng,Feng Qing-Zhi2,Fan Wei1

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning, China

2. Department of Audio and Video Material Examination Technology, Criminal Investigation Police University of China, Shenyang, Liaoning, China

Abstract

BACKGROUND: In order to alleviate muscle fatigue and improve ride comfort, many published studies aimed to improve the seat environment or optimize seating posture. However, the effect of lumbar support on the lumbar muscle of seated subjects under whole body vibration is still unclear. OBJECTIVE: This study aimed to investigate the effect of lumbar support magnitude of the seat on lumbar muscle fatigue relief under whole body vibration. METHODS: Twenty healthy volunteers without low back pain participated in the experiment. By measuring surface electromyographic signals of erector spinae muscles under vibration or non-vibration for 30 minutes, the effect of different lumbar support conditions on muscle fatigue was analyzed. The magnitude of lumbar support d is assigned as d1= 0 mm, d2= 20 mm and d3= 40 mm for no support, small support and large support, respectively. RESULTS: The results showed that lumbar muscle activation levels vary under different support conditions. For the small support case (d2= 20 mm), the muscle activation level under vibration and no-vibration was the minimum, 42.3% and 77.7% of that under no support (d1= 0 mm). For all support conditions, the muscle activation level under vibration is higher than that under no-vibration. CONCLUSIONS: The results indicate that the small support yields the minimum muscle contraction (low muscle contraction intensity) under vibration, which is more helpful for relieving lumbar muscle fatigue than no support or large support cases. Therefore, an appropriate lumbar support of seats is necessary for alleviating lumbar muscle fatigue.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3