A wearable electromyography-controlled functional electrical stimulation system improves balance, gait function, and symmetry in older adults

Author:

Park Hye-Kang1,Jung Joonyoung2,Lee Dong-Woo2,Shin Hyung Cheol2,Lee Hwang-Jae31,Lee Wan-Hee4

Affiliation:

1. Department of Physical Therapy Graduate School Sahmyook University, Hwarang-ro, Nowon-gu, Seoul, Korea

2. Human Enhancement and Assistive Technology Research Section, Artificial Intelligent Research Laboratory, Electronics and Telecommunications Research Institute, Gajeong-ro, Yuseong-gu, Daejeon, Korea

3. Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Irwon-ro, Gangnam-gu, Seoul, Korea

4. Department of Physical Therapy, Sahmyook University College of Health Science, Hwarang-ro, Nowon-gu, Seoul, Korea

Abstract

BACKGROUND: Wearable technologies have been developed for healthy aging. The technology for electromyography (EMG)-controlled functional electrical stimulation (FES) systems has been developed, but research on how helpful it is in daily life has been insufficient. OBJECTIVE: The purpose of this study was to investigate the effect of the EMG-controlled FES system on muscle morphology, balance, and gait in older adults. METHODS: Twenty-nine older adults were evaluated under two randomly assigned conditions (non-FES and FES assists). Muscle morphology, balance, gait function, and muscle effort during gait were measured using ultrasonography, a physical test, a gait analysis system, and EMG. RESULTS: The EMG-controlled FES system improved gait speed by 11.1% and cadence by 15.6% (P< 0.01). The symmetry ratio of the bilateral gastrocnemius was improved by 9.9% in the stance phase and 11.8% in the swing phase (P< 0.05). The degrees of coactivation of the knee and ankle muscles were reduced by 45.1% and 50.5%, respectively (P< 0.05). Balance improved by 6–10.7% (P< 0.01). CONCLUSION: The EMG-controlled FES system is useful for balance and gait function by increasing muscle symmetry and decreasing muscle coactivation during walking in older adults.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3