SPCM: Efficient semi-possibilistic c-means clustering algorithm

Author:

Mahfouz Mohamed A.1

Affiliation:

1. Faculty of Computer Science, MSA University, Egypt

Abstract

The required division and exponentiation operations needed per iteration for the possibilistic c-means (PCM) clustering algorithm complicate its implementation, especially on homomorphically-encrypted data. This paper presents a novel efficient soft clustering algorithm based on the possibilistic paradigm, termed SPCM. It aims at easing future applications of PCM to encrypted data. It reduces the required exponentiation and division operations at each iteration by restricting the membership values to an ordered set of discrete values in [0,1], resulting in a better performance in terms of runtime and several other performance indices. At each iteration, distances to the new clusters’ centers are determined, then the distances are compared to the initially computed and dynamically updated range of values, that divide the entire range of distances associated with each cluster center into intervals (bins), to assign appropriate soft memberships to objects. The required number of comparisons is O(log the number of discretization levels). Thus, the computation of centers and memberships is greatly simplified during execution. Also, the use of discrete values for memberships allows soft modification (increment or decrement) of the soft memberships of identified outliers and core objects instead of rough modification (setting to zero or one) in related algorithms. Experimental results on synthetic and standard test data sets verified the efficiency and effectiveness of the proposed algorithm. The average percent of the achieved reduction in runtime is 35% and the average percent of the achieved increase in v-measure, adjusted mutual information, and adjusted rand index is 6% on five datasets compared to PCM. The larger the dataset, the higher the reduction in runtime. Also, SPCM achieved a comparable performance with less computational complexity compared to variants of related algorithms.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3