Affiliation:
1. School of Economics and Management, University of Science and Technology Beijing, Beijing, China
2. Information System Engineering Laboratory, National University of Defense Technology, Changsha, China
Abstract
The prediction of residential building electricity consumption can help provide an early warning regarding abnormal energy use and optimize energy supply. In this study, a multiscale convolutional recurrent neural network (MCRNN) is proposed to predict residential building electricity consumption. The MCRNN model uses multiscale convolutional units to collect different information on environmental factors, such as temperature, air pressure, light, and uses a bidirectional recurrent neural network (Bi-RNN) to extract the long-term dependence information of these factors. In addition, a recurrent convolutional connection is used to filter the most useful multiscale and long-term information in the MCRNN model. The accuracy of MCRNN is evaluated through an experiment using real data. The results show that MCRNN performs better than the other models. For instance, compared with the support vector regression (SVR) and random forest (RF) models, the MCRNN model has a 47.83% and 38.72% lower root mean square error (RMSE), respectively. The MCRNN model also shows a 37.81% and 70.38% higher accuracy, respectively, compared to the SVR and RF models.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献