Product review opinion based on sentiment analysis

Author:

Purohit Amit1,Patheja Pushpinder Singh1

Affiliation:

1. Vellore Institute of Technology – VIT Bhopal, Kotri Kalan, Ashta, Near, Indore Road, Bhopal, Madhya Pradesh, India

Abstract

Sentiment analysis is a natural language processing (NLP) technique for determining emotional tone in a body of text. Using product reviews in sentiment analysis and opinion mining various methods have been developed previously. Although, existing product review analyzing techniques could not accurately detect the product aspect and non-aspect. Hence a novel Detach Frequency Assort is proposed to detect the product aspect term using TF-ISF (Term frequency-inverse sentence frequency) with Part of Speech (POS) tags for sentence segmentation and additionally using Feedback Neural Network to combine product aspect feedback loop. Furthermore, decision-making problem occurs during classification of sentiments. Hence, to solve this problem a novel technique named, Systemize Polarity Shift is proposed in which flow search based Support Vector Machine (SVM) with Bag of Words model classifies pre-trained review comments as positive, negative, and neutral sentiments. Moreover, the identification of specific products is not focused in sentiment analysis. Hence, a novel Revival Extraction is proposed in which a specific product is extracted based on thematic analysis method to obtain accurate data. Thus, the proposed Product Review Opinion framework gives effective optimized results in sentiment analysis with high accuracy, specificity, recall, sensitivity, F1-Score, and precision.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference26 articles.

1. Aspect based fine grained sentiment analysis for online reviews;Tang;Information Sciences,2019

2. Sentiment analysis based on improved pre-trained word embeddings;Rezaeinia;Expert Systems with Applications,2019

3. Co-LSTM: Convolutional LSTM model for sentiment analysis in social big data;Behera;Information Processing & Management,2021

4. Aspect-based sentiment analysis using adaptive aspect-based lexicons

5. Decoding the sentiment dynamics of online retailing customers: time series analysis of social media,;Ibrahim;Comput HumBehav,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sentiment analysis of video danmakus based on MIBE-RoBERTa-FF-BiLSTM;Scientific Reports;2024-03-09

2. Sentiments Analysis on Amazon Product Reviews Using Supervised Machine Learning Algorithms;2023 International Conference on Integration of Computational Intelligent System (ICICIS);2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3