One class SVM model based on neural tangent kernel for anomaly detection task on small-scale data

Author:

Zhai Yuejing1,Liu Haizhong1

Affiliation:

1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, China

Abstract

Recent studies have shown that the evolution of infinitely wide neural networks satisfying certain conditions can be described by a kernel function called neural tangent kernel (NTK). We introduce NTK into a one-class support vector machine model and select data from different domains in UCI for a small-sample outlier detection task, demonstrate that NTK-OCSVM generally outperforms a variety of commonly used classification models, with more than 20% improvement in accuracy for similar models. When the kernel function parameters are varied, the experiments show that the model has strong robustness within a certain parameter range. Finally, we experimentally compare the time complexity of different models and the decision boundaries, and demonstrate that NTK-OCSVM improves accuracy at the expense of operational efficiency and has linear decision boundaries.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference28 articles.

1. Arora S. , Du S.S. , Li Z. , et al., Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks, Proceedings of the 8th International Conference on Learning Representations, 2019.

2. Arora S. , Du S.S. , Hu W. , et al., On Exact Computation with an Infinitely Wide Neural Net, Proceedings of the Neural Information Processing Systems, 2019.

3. Alemohammad S. , Wang Z. , Balestriero R. , et al., The Recurrent Neural Tangent Kernel, Proceedings of the International Conference on Learning Representations, 2021.

4. Reconciling modern machine-learning practice and the classical bias–variance trade-off;Belkin;Proceedings of the National Academy of Sciences,2019

5. Estimating the support of a high-dimensional distribution;Schölkopf;Neural Comput,1999

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3