Affiliation:
1. School of Business, Jiangnan University, Wuxi, Jiangsu Province, China
Abstract
This paper aims to improve the accuracy of software defect prediction by using a prediction model based on grey incidence analysis and Naive Bayes algorithm. The model employs the Naïve Bayes as the basic classifier of the software defect prediction model. The grey incidence analysis is used to analyze the relation between software modules and ideal modules. Then, the grey correlation degree is embedded into the Naive Bayes classification model as a feature attribute. According to the comparison and analysis of NASA’s public dataset, the prediction model in this paper improves the prediction accuracy.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability