Exploring simple K-means clustering algorithm for automating segregation of colors in leaf of Axonopus compressus: Towards maintenance of an urban landscape

Author:

Singh Lovepreet12,Huang He1,Bordoloi Sanandam3,Garg Ankit1,Jiang Mingjie4

Affiliation:

1. Department of Civil and Environmental Engineering, Shantou University, China

2. Department of Computer Science and Engineering, Indian Institute of Technology, Gandhinagar, India

3. Department of Civil Engineering, IIT Guwahati, India

4. Department of Civil Engineering and Architecture, Guangxi University, China

Abstract

Images of green infrastructure (gardens, green corridor, green roofs and grasslands) large area can be captured and processed to provide spatial and temporal variation in colours of plant leaves. This may indicate average variation in plant growth over large urban landscape (community gardens, green corridor etc). Towards this direction, this short technical note explores development of a simple automated machine learning program that can accurately segregate colors from plant leaves. In this newly developed program, a machine learning algorithm has been modified and adapted to give the proportion of different colors present in a leaf. Python script is developed for an image processing. For validation, experiments are conducted in green house to grow Axonopus compressus. Script first extracts different RGB (Red Green and Blue) colors present in the leaf using the K-means clustering algorithm. Appropriate centroids required for the clusters of leaf colors are formed by the K-means algorithm. The new program provides saves computation time and gives output in form of different colors proportion as a CSV (Comma-Separated Values) file. This study is the first step towards the demonstration of using automated programs for the segregation of colors from the leaf in order to access the growth of the plant in an urban landscape.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3