A fuzzy multiple linear regression model based on meteorological factors for air quality index forecast

Author:

Gu Yujie1,Zhao Yuxiu2,Zhou Jian2,Li Hui2,Wang Yujie2

Affiliation:

1. Research Center of Energy Economy, School of Business Administration, Henan Polytechnic University, Jiaozuo, China

2. School of Management, Shanghai University, Shanghai, China

Abstract

Air quality index (AQI) is an indicator usually issued on a daily basis to inform the public how good or bad air quality recently is or how it will become over the next few days, which is of utmost importance in our life. To provide a more practicable way for AQI prediction, so that residents can clear about air conditions and make further plans, five imperative meteorological indicators are elaborately selected. Accordingly, taking these indicators as independent variables, a fuzzy multiple linear regression model with Gaussian fuzzy coefficients is proposed and reformulated, based on the linearity of Gaussian fuzzy numbers and Tanaka’s minimum fuzziness criterion. Subsequently, historical data in Shanghai from March 2016 to February 2018 are extracted from the government database and divided into two parts, where the first half is statistically analyzed and used for formulating four seasonal fuzzy linear regression models in views of the special climate environment of Shanghai, and the second half is used for prediction to validate the performance of the proposed model. Furthermore, considering that there is beyond dispute that triangular fuzzy number is more prevalent and crucial in the field of fuzzy studies for years, plenty of comparisons between the models based on the two types of fuzzy numbers are carried out by means of the three measures including the membership degree, the fuzziness and the credibility. The results demonstrate the powerful effectiveness and efficiency of the fuzzy linear regression models for AQI prediction, and the superiority of Gaussian fuzzy numbers over triangular fuzzy numbers in presenting the relationships between the meteorological factors and AQI.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of Teaching Quality of Open Online Courses based on Weighted Markov Chain;Proceedings of the 2024 9th International Conference on Distance Education and Learning;2024-06-14

2. Development of pedestrian collision avoidance strategy based on the fusion of Markov and social force models;Mechanical Sciences;2024-01-18

3. Delhi Air Pollution Prediction Based on Weather Conditions Using Machine Learning;2023 1st DMIHER International Conference on Artificial Intelligence in Education and Industry 4.0 (IDICAIEI);2023-11-27

4. Forecasting the effect of parameters on AQI values with Machine learning: Multiple Linear Regression;2023 6th International Conference on Information and Communications Technology (ICOIACT);2023-11-10

5. Analysis of tennis techniques and tactics based on multiple linear regression model;Applied Mathematics and Nonlinear Sciences;2023-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3