Hybrid and dynamic clustering based data aggregation and routing for wireless sensor networks

Author:

Dhanaraj Rajesh Kumar1,Lalitha K.2,Anitha S.2,Khaitan Supriya1,Gupta Punit3,Goyal Mayank Kumar4

Affiliation:

1. School of Computing Science and Engineering, Galgotias University, India

2. Department of Information Technology, Kongu Engineering College, India

3. Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India

4. Department of Computer Science and Engineering, Sharda University, Greater Noida, Uttar Pradesh, India

Abstract

In Wireless Sensor Networks (WSNs), effective transmission with acceptable degradation in the power of sensor nodes is a key challenge. In a large network, holdup is bound to occur in communicating superfluous data. The aforementioned issues namely, energy, delay and data redundancy are interdependent on each other and a tradeoff needs to be worked out to improve the overall performance. The extant methods in the literature employ either centralized or distributed approach to select a cluster head (CH). In this paper, sink originated hybrid and dynamic clustering with routing technique is proposed. The proposed routing algorithm works based on node handling capability of each sensor node in the selection of CH and also helps in identifying the forwarder node. In addition, processing load of a sensor node is also considered for selecting the forwarder. Both space and time correlation is used to collect data from the clusters and then aggregated to provide a proficient communication. The introduced method is evaluated with the performance of the previously available techniques like, Data Routing for In-Network Aggregation (DRINA), Efficient Data Collection Aware of Spatio-Temporal Correlation (EAST), Cluster-Based Data Aggregation (CBDA), Energy-Efficient Data Aggregation and Transfer (EEDAT), and Distributed algorithm for Integrated tree Construction and data Aggregation (DICA). Simulation parameters considered for assess ing the performance of the proposed algorithm are aggregation ratio, routing overhead, packet delivery fraction, throughput, packet delay and consumed energy. The experimental analysis of the introduced algorithm generates paramount outcome of finest aggregation quality with diverse key characteristics and circumstances as required by a sensor network.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3