Collaborative task scheduling with new task arrival in cloud manufacturing using improved multi-population biogeography-based optimization

Author:

Dai Ziwei1,Zhang Zhiyong1,Chen Mingzhou2

Affiliation:

1. Department of Electronic Business, South China University of Technology, Guangzhou, China

2. School of Economics and Management, Tongji University, Shanghai, China

Abstract

Task scheduling is important in cloud manufacturing because of customers’ increasingly individualized demands. However, when various changes occur, a previous optimal schedule may become non-optimal or even infeasible owing to the uncertainty of the real manufacturing environment where dynamic task arrival over time is a vital source. In this paper, we propose a novel collaborative task scheduling (CTS) model dealing with new task arrival which considers multi-supply chain collaboration. We present an improved multi-population biogeography-based optimization (IMPBBO) algorithm that uses a matrix-based solution representation and integrates the multi-population strategy, local search for the best solution, and the collaboration mechanism, for determining the optimal schedule. A series of experiments are conducted for verifying the effectiveness of the IMPBBO algorithm for solving the CTS model by comparing it with five other algorithms. The experimental results concerning average best values obtained by the IMPBBO algorithm are better than that obtained by comparison algorithms for 41 out of 45 cases, showing its superior performance. Wilcoxon-test has been employed to strengthen the fact that IMPBBO algorithm performs better than five comparison algorithms.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference48 articles.

1. Cloud manufacturing: a new manufacturing paradigm;Zhang;Enterprise Information Systems,2014

2. From cloud computing to cloud manufacturing;Xu;Robotics and Computer-Integrated Manufacturing,2012

3. Workload-based multi-task scheduling in cloud manufacturing;Liu;Robotics and Computer-Integrated Manufacturing,2017

4. Scheduling in cloud manufacturing: state-of-the-art and research challenges;Liu;International Journal of Production Research,2019

5. Dynamic service selection with QoS constraints and inter-service correlations using cooperative coevolution;Liang;Future Generation Computer Systems,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3