Mitochondria Profoundly Influence Apolipoprotein E Biology

Author:

Gabrielli Alexander P.12,Weidling Ian12,Ranjan Amol1,Wang Xiaowan1,Novikova Lesya1,Chowdhury Subir Roy1,Menta Blaise13,Berkowicz Alexandra13,Wilkins Heather M.134,Peterson Kenneth R.14,Swerdlow Russell H.1234

Affiliation:

1. University of Kansas Alzheimer’s Disease Research Center, Kansas City, KS, USA

2. Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA

3. Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA

4. Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA

Abstract

Background: Mitochondria can trigger Alzheimer’s disease (AD)-associated molecular phenomena, but how mitochondria impact apolipoprotein E (APOE; apoE) is not well known. Objective: Consider whether and how mitochondrial biology influences APOE and apoE biology. Methods: We measured APOE expression in human SH-SY5Y neuronal cells with different forms of mitochondrial dysfunction including total, chronic mitochondrial DNA (mtDNA) depletion (ρ0 cells); acute, partial mtDNA depletion; and toxin-induced mitochondrial dysfunction. We further assessed intracellular and secreted apoE protein levels in the ρ0 cells and interrogated the impact of transcription factors and stress signaling pathways known to influence APOE expression. Results: SH-SY5Y ρ0 cells exhibited a 65-fold increase in APOE mRNA, an 8-fold increase in secreted apoE protein, and increased intracellular apoE protein. Other models of primary mitochondrial dysfunction including partial mtDNA-depletion, toxin-induced respiratory chain inhibition, and chemical-induced manipulations of the mitochondrial membrane potential similarly increased SH-SY5Y cell APOE mRNA. We explored potential mediators and found in the ρ0 cells knock-down of the C/EBPα and NFE2L2 (Nrf2) transcription factors reduced APOE mRNA. The activity of two mitogen-activated protein kinases, JNK and ERK, also strongly influenced ρ0 cell APOE mRNA levels. Conclusion: Primary mitochondrial dysfunction either directly or indirectly activates APOE expression in a neuronal cell model by altering transcription factors and stress signaling pathways. These studies demonstrate mitochondrial biology can influence the biology of the APOE gene and apoE protein, which are implicated in AD.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3