Attention mechanism based LSTM in classification of stressed speech under workload

Author:

Yao Xiao1,Sheng Zhengyan1,Gu Min23,Wang Haibin1,Xu Ning1,Liu Xiaofeng1

Affiliation:

1. The College of IoT Engineering, Hohai University, Jiangsu, China

2. Department of Stomatology, Affiliated Third Hospital of Soochow University, Suzhou, Jiangsu, China

3. The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China

Abstract

In order to improve the robustness of speech recognition systems, this study attempts to classify stressed speech caused by the psychological stress under multitasking workloads. Due to the transient nature and ambiguity of stressed speech, the stress characteristics is not represented in all the segments in stressed speech as labeled. In this paper, we propose a multi-feature fusion model based on the attention mechanism to measure the importance of segments for stress classification. Through the attention mechanism, each speech frame is weighted to reflect the different correlations to the actual stressed state, and the multi-channel fusion of features characterizing the stressed speech to classify the speech under stress. The proposed model further adopts SpecAugment in view of the feature spectrum for data augment to resolve small sample sizes problem among stressed speech. During the experiment, we compared the proposed model with traditional methods on CASIA Chinese emotion corpus and Fujitsu stressed speech corpus, and results show that the proposed model has better performance in speaker-independent stress classification. Transfer learning is also performed for speaker-dependent classification for stressed speech, and the performance is improved. The attention mechanism shows the advantage for continuous speech under stress in authentic context comparing with traditional methods.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3