Alleviating the independence assumptions of averaged one-dependence estimators by model weighting

Author:

Wang Li-Min12,Chen Peng12,Mammadov Musa3,Liu Yang1,Wu Si-Yuan1

Affiliation:

1. College of Computer Science and Technology, Jilin University, Changchun, Jilin, China

2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China

3. School of Information Technology, Deakin University, Victoria, Australia

Abstract

Of numerous proposals to refine naive Bayes by weakening its attribute independence assumption, averaged one-dependence estimators (AODE) has been shown to be able to achieve significantly higher classification accuracy at a moderate cost in classification efficiency. However, all one-dependence estimators (ODEs) in AODE have the same weights and are treated equally. To address this issue, model weighting, which assigns discriminate weights to ODEs and then linearly combine their probability estimates, has been proved to be an efficient and effective approach. Most information-theoretic weighting metrics, including mutual information, Kullback-Leibler measure and the information gain, place more emphasis on the correlation between root attribute (value) and class variable. We argue that the topology of each ODE can be divided into a set of local directed acyclic graphs (DAGs) based on the independence assumption, and multivariate mutual information is introduced to measure the extent to which the DAGs fit data. Based on this premise, in this study we propose a novel weighted AODE algorithm, called AWODE, that adaptively selects weights to alleviate the independence assumption and make the learned probability distribution fit the instance. The proposed approach is validated on 40 benchmark datasets from UCI machine learning repository. The experimental results reveal that, AWODE achieves bias-variance trade-off and is a competitive alternative to single-model Bayesian learners (such as TAN and KDB) and other weighted AODEs (such as WAODE).

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3