Multidimensional indexing technique for medical images retrieval

Author:

Safaei Ali Asghar,Habibi-Asl Saeede

Abstract

Retrieving required medical images from a huge amount of images is one of the most widely used features in medical information systems, including medical imaging search engines. For example, diagnostic decision making has traditionally been accompanied by patient data (image or non-image) and previous medical experiences from similar cases. Indexing as part of search engines (or retrieval system), increases the speed of a search. The goal of this study, is to provide an effective and efficient indexing technique for medical images search engines. In this paper, in order to archive this goal, a multidimensional indexing technique for medical images is designed using the normalization technique that is used to reduce redundancy in relational database design. Data structure of the proposed multidimensional index and also different required operations are designed to create and handle such a multidimensional index. Time complexity of each operation is analyzed and also average memory space required to store any medical image (along with its related metadata) is calculated as the space complexity analysis of the proposed indexing technique. The results show that the proposed indexing technique has a good performance in terms of memory usage, as well as execution time for the usual operations. Moreover, and may be more important, the proposed indexing techniques improves the precision and recall of the information retrieval system (i.e., search engine) which uses this technique for indexing medical images. Besides, a user of such search engine can retrieve medical images which s/he has specified its attributes is some different aspects (dimensions), e.g., tissue, image modality and format, sickness and trauma, etc. So, the proposed multidimensional indexing techniques can improve effectiveness of a medical image information retrieval system (in terms of precision and recall), while having a proper efficiency (in terms of execution time and memory usage), and can improve the information retrieval process for healthcare search engines.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3