Effects of laptop screen height on neck and shoulder muscle fatigue and spine loading for office workers

Author:

Guo Zenghui1,Chen Zhiyuan1,Pai Junjun2,Fang Bin123,Liang Wenhao1,Su Guosheng13,Zheng Feng13

Affiliation:

1. School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China

2. Shandong Key Laboratory of Advanced Aluminum Materials and Technology, Binzhou Institute of Technology, Binzhou, China

3. Shandong Institute of Mechanical Design and Research, Jinan, China

Abstract

BACKGROUND: Due to the unfavourable neck-shoulder muscle loads caused by poor posture, the people who use the laptop for a long time may face the risk of neck and shoulder injuries. OBJECTIVE: The purpose of this study investigates the impact of the screen height on the muscle activation of head flexion, neck and shoulder, and the cervical spine torque to provide the favorite screen height for laptop user. METHODS: Twelve healthy young participants completed a15-minute task of the reading at the four different screen heights. sEMG signals of the splenius capitis (SC) and upper trapezius (UT) were measured and calculated the root mean square (RMS) and mean power frequency (MPF) to determine muscle fatigue. The different height of laptop users was simulated and the forces on the spine of users at different screen heights were analyzed by Jack. RESULTS: Adjusting the height of the laptop screen can effectively reduce head flexion and muscle activity of SC and UT, and has a positive effect on reducing fatigue of SC, but has no significant effect on UT. CONCLUSIONS: Adjusting the height of the laptop screen can delay the occurrence of SC muscle fatigue to a certain extent. The joint analysis of sEMG spectrum and amplitude reports that the screen heights of D15 and D45 have the highest and the lowest frequency of fatigue, respectively. At the same time, the moment of spineT1/T2 and spineL4/L5 decrease with the increase of screen height.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3