Internet of Things assisted Unmanned Aerial Vehicle for Pest Detection with Optimized Deep Learning Model

Author:

G Vijayalakshmi1,Y Radhika1

Affiliation:

1. Department of Computer Science and Engineering, GITAM School of Technology, GITAM (Deemed to-be University), Visakhapatnam-530045, A.P, India, India

Abstract

IoT technologies & UAVs are frequently utilized in ecological monitoring areas. Unmanned Aerial Vehicles (UAVs) & IoT in farming technology can evaluate crop disease & pest incidence from the ground’s micro & macro aspects, correspondingly. UAVs could capture images of farms using a spectral camera system, and these images are been used to examine the presence of agricultural pests and diseases. In this research work, a novel IoT- assisted UAV- based pest detection with Arithmetic Crossover based Black Widow Optimization-Convolutional Neural Network (ACBWO-CNN) model is developed in the field of agriculture. Cloud computing mechanism is used for monitoring and discovering the pest during crop production by using UAVs. The need for this method is to provide data centers, so there is a necessary amount of memory storage in addition to the processing of several images. Initially, the collected input image by the UAV is assumed on handling the via-IoT-cloud server, from which the pest identification takes place. The pest detection unit will be designed with three major phases: (a) background &foreground Segmentation, (b) Feature Extraction & (c) Classification. In the foreground and background Segmentation phase, the K-means clustering will be utilized for segmenting the pest images. From the segmented images, it extracts the features including Local Binary Pattern (LBP) &improved Local Vector Pattern (LVP) features. With these features, the optimized CNN classifier in the classification phase will be trained for the identification of pests in crops. Since the final detection outcome is from the Convolutional Neural Network (CNN); its weights are fine-tuned through the ACBWO approach. Thus, the output from optimized CNN will portray the type of pest identified in the field. This method’s performance is compared to other existing methods concerning a few measures.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Networks and Communications,Software

Reference29 articles.

1. Novel meta-heuristic bald eagle search optimization algorithm;Alsattar;ArtifIntell Rev,2020

2. Monitoring of Trees’ Health Condition Using a UAV Equipped with Low-cost Digital Camera

3. Convolutional neural network for water quality prediction in WSN;Chandanapalli;Journal of Networking and Communication Systems,2019

4. An IoT-based smart agricultural system for pests detection;Chen;IEEE Access,2020

5. Identification of fruit tree pests with deep learning on embedded drone to achieve accurate pesticide spraying;Chen;IEEE Access,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3