Hybrid deep model for brain age prediction in MRI with improved chi-square based selected features

Author:

G.S Vishnupriya1,Rajakumari S. Brintha2

Affiliation:

1. Department of Computer Science and Engineering, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamilnadu, India

2. Department of Computer Science, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamilnadu, India

Abstract

Ageing and its related health conditions bring many challenges not only to individuals but also to society. Various MRI techniques are defined for the early detection of age-related diseases. Researchers continue the prediction with the involvement of different strategies. In that manner, this research intends to propose a new brain age prediction model under the processing of certain steps like preprocessing, feature extraction, feature selection, and prediction. The initial step is preprocessing, where improved median filtering is proposed to reduce the noise in the image. After this, feature extraction takes place, where shape-based features, statistical features, and texture features are extracted. Particularly, Improved LGTrP features are extracted. However, the curse of dimensionality becomes a serious issue in this aspect that shrinks the efficiency of the prediction level. According to the “curse of dimensionality,” the number of samples required to estimate any function accurately increases exponentially as the number of input variables increases. Hence, a feature selection model with improvement has been introduced in this paper termed an improved Chi-square. Finally, for prediction purposes, a Hybrid classifier is introduced by combining the models like Bi-GRU and DBN, respectively. In order to enhance the effectiveness of the hybrid method, Upgraded Blue Monkey Optimization with Improvised Evaluation (UBMOIE) is introduced as the training system by tuning the optimal weights in both classifiers. Finally, the performance of the suggested UBMIOE-based brain age prediction method was assessed over the other schemes to various metrics.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3