Sparse angle CT reconstruction based on group sparse representation

Author:

Gu Yanan12,Liu Yi12,Liu Wenting12,Yan Rongbiao12,Liu Yuhang13,Gui Zhiguo12

Affiliation:

1. State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, China

2. School of Information and Communication Engineering, North University of China, Taiyuan, China

3. School of Computer Science and Technology, North University of China, Taiyuan, China

Abstract

OBJECTIVE: In order to solve the problem of image quality degradation of CT reconstruction under sparse angle projection, we propose to develop and test a new sparse angle CT reconstruction method based on group sparse. METHODS: In this method, the group-based sparse representation is introduced into the statistical iterative reconstruction framework as a regularization term to construct the objective function. The group-based sparse representation no longer takes a single patch as the minimum unit of sparse representation, while it uses Euclidean distance as a similarity measure, thus it divides similar patch into groups as basic units for sparse representation. This method fully considers the local sparsity and non-local self-similarity of image. The proposed method is compared with several commonly used CT image reconstruction methods including FBP, SART, SART-TV and GSR-SART with experiments carried out on Sheep_Logan phantom and abdominal and pelvic images. RESULTS: In three experiments, the visual effect of the proposed method is the best. Under 64 projection angles, the lowest RMSE is 0.004776 and the highest VIF is 0.948724. FSIM and SSIM are all higher than 0.98. Under 50 projection angles, the index of the proposed method remains achieving the best image quality. CONCLUSION: Qualitative and quantitative results of this study demonstrate that this new proposed method can not only remove strip artifacts, but also effectively protect image details.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Reference25 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3