Lung tumor segmentation using dual-coupling net with shape prior based on lung and mediastinal window images from chest CT images

Author:

Byun Sohyun1,Jung Julip1,Hong Helen1,Kim Bong-Seog2

Affiliation:

1. Department of Software Convergence, Seoul Women’s University, Seoul, Republic of Korea

2. R&D Center, Boryung Ltd., Seoul, Republic of Korea

Abstract

BACKGROUND: Volumetric lung tumor segmentation is difficult due to the diversity of the sizes, locations and shapes of lung tumors, as well as the similarity in the intensity with surrounding tissue structures. OBJECTIVE: We propose a dual-coupling net for accurate lung tumor segmentation in chest CT images regardless of sizes, locations and shapes of lung tumors. METHODS To extract shape information from lung tumors and use it as shape prior, three-planar images including axial, coronal, and sagittal planes are trained on 2D-Nets. Two types of window images, lung and mediastinal window images, are trained on 2D-Nets to distinguish lung tumors from the thoracic region and to better separate the boundaries of lung tumors from adjacent tissue structures. To prevent false-positive outliers to adjacent structures and to consider the spatial information of lung tumors, pairs of tumor volume-of-interest (VOI) and tumor shape prior are trained on 3D-Net. RESULTS In the first experiment, the dual-coupling net had the highest Dice Similarity Coefficient (DSC) of 75.7%, considering the shape prior as well as mediastinal window images to prevent the leakage of adjacent structures while maintaining the shape of the lung tumor, with 18.23% p, 3.7% p, 1.1% p, and 1.77% p higher DSCs than in the 2D-Net, 2.5D-Net, 3D-Net, and single-coupling net results, respectively. In the second experiment with annotations for two clinicians, the dual-coupling net showed outcomes of 67.73% and 65.07% regarding the DSC for each annotation. In the third experiment, the dual-coupling net showed 70.97% for the DSC. CONCLUSIONS The dual-coupling net enables accurate segmentation by distinguishing lung tumors from surrounding tissue structures and thus yields the highest DSC value.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Reference14 articles.

1. Consequences of lung cancer: Mortality and comorbidity in Danish patients with lung cancer;Kirkeby;European Respiratory Journal,2019

2. WHO Panel, The World Health Organization classification of lung tumors;Travis;Journal of Thoracic Oncology,2015

3. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1);Eisenhauer;European Journal of Cancer,2009

4. Measurement variability in treatment response determination for non–small cell lung cancer: Improvements using radiomics,;Lee;Journal of Thoracic Imaging,2019

5. Radiomics study for predicting the expression of PD-L1 in non-small cell lung cancer based on CT images and clinicopathologic features;Sun;Journal of X-ray Science and Technology,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3