Development of an automatic multiplanar reconstruction processing method for head computed tomography

Author:

Sato Mitsuru1,Kondo Yohan1,Takahashi Noriyuki2,Ohmura Tomomi3,Takahashi Naoya1

Affiliation:

1. Department of Radiological Technology, School of Health Sciences, Niigata University, Asahimachi-dori, Chuo-ku, Niigata, Niigata, Japan

2. Department of Medical Radiological Technology, School of Health Sciences, Fukushima Medical University, Sakae-machi, Fukushima, Fukushima, Japan

3. Department of Radiology and Nuclear Medicine, Research Institute for Brain and Blood Vessels-Akita, Senshu-kubota-machi, Akita, Japan

Abstract

BACKGROUND: Head computed tomography (CT) is a commonly used imaging modality in radiology facilities. Since multiplanar reconstruction (MPR) processing can produce different results depending on the medical staff in charge, there is a possibility that the antemortem and postmortem images of the same person could be assessed and identified differently. OBJECTIVE: To propose and test a new automatic MPR method in order to address and overcome this limitation. METHODS: Head CT images of 108 cases are used. We employ the standardized transformation of statistical parametric mapping 8. The affine transformation parameters are obtained by standardizing the captured CT images. Automatic MPR processing is performed by using this parameter. The sphenoidal sinus of the orbitomeatal cross section of the automatic MPR processing of this study and the conventional manual MPR processing are cropped with a matrix size of 128×128, and the value of zero mean normalized correlation coefficient is calculated. RESULTS: The computed zero mean normalized cross-correlation coefficient (Rzncc) of≥0.9, 0.8≤Rzncc < 0.9 and 0.7≤Rzncc < 0.8 are achieved in 105 cases (97.2%), 2 cases (1.9%), and 1 case (0.9%), respectively. The average Rzncc was 0.96±0.03. CONCLUSION: Using the proposed new method in this study, MPR processing with guaranteed accuracy is efficiently achieved.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3