Segmentation of liver tumors with abdominal computed tomography using fully convolutional networks

Author:

Chen Chih-I12345,Lu Nan-Han678,Huang Yung-Hui8,Liu Kuo-Ying7,Hsu Shih-Yen4,Matsushima Akari9,Wang Yi-Ming410,Chen Tai-Been811

Affiliation:

1. Division of Colon and Rectal Surgery, Department of Surgery, E-DA Hospital, Kaohsiung City, Taiwan

2. Division of General Medicine Surgery, Department of Surgery, E-DA Hospital, Kaohsiung City, Taiwan

3. School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan

4. Department of Information Engineering, I-Shou University, Kaohsiung City, Taiwan

5. The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung City, Taiwan

6. Department of Pharmacy, Tajen University, Pingtung City, Taiwan

7. Department of Radiology, E-DA Hospital, I-Shou University, Kaohsiung City, Taiwan

8. Department of Medical Imaging and Radiological Science, I-Shou University, Kaohsiung City, Taiwan

9. Department of Radiological Technology Faculty of Medical Technology, Teikyo University, Tokyo, Japan

10. Department of Critical Care Medicine, E-DA hospital, I-Shou University, Kaohsiung City, Taiwan

11. Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

Abstract

BACKGROUND: Dividing liver organs or lesions depicting on computed tomography (CT) images could be applied to help tumor staging and treatment. However, most existing image segmentation technologies use manual or semi-automatic analysis, making the analysis process costly and time-consuming. OBJECTIVE: This research aims to develop and apply a deep learning network architecture to segment liver tumors automatically after fine tuning parameters. METHODS AND MATERIALS: The medical imaging is obtained from the International Symposium on Biomedical Imaging (ISBI), which includes 3D abdominal CT scans of 131 patients diagnosed with liver tumors. From these CT scans, there are 7,190 2D CT images along with the labeled binary images. The labeled binary images are regarded as gold standard for evaluation of the segmented results by FCN (Fully Convolutional Network). The backbones of FCN are extracted from Xception, InceptionresNetv2, MobileNetv2, ResNet18, ResNet50 in this study. Meanwhile, the parameters including optimizers (SGDM and ADAM), size of epoch, and size of batch are investigated. CT images are randomly divided into training and testing sets using a ratio of 9:1. Several evaluation indices including Global Accuracy, Mean Accuracy, Mean IoU (Intersection over Union), Weighted IoU and Mean BF Score are applied to evaluate tumor segmentation results in the testing images. RESULTS: The Global Accuracy, Mean Accuracy, Mean IoU, Weighted IoU, and Mean BF Scores are 0.999, 0.969, 0.954, 0.998, 0.962 using ResNet50 in FCN with optimizer SGDM, batch size 12, and epoch 9. It is important to fine tuning the parameters in FCN model. Top 20 FNC models enable to achieve higher tumor segmentation accuracy with Mean IoU over 0.900. The occurred frequency of InceptionresNetv2, MobileNetv2, ResNet18, ResNet50, and Xception are 9, 6, 3, 5, and 2 times. Therefore, the InceptionresNetv2 has higher performance than others. CONCLUSIONS: This study develop and test an automated liver tumor segmentation model based on FCN. Study results demonstrate that many deep learning models including InceptionresNetv2, MobileNetv2, ResNet18, ResNet50, and Xception have high potential to segment liver tumors from CT images with accuracy exceeding 90%. However, it is still difficult to accurately segment tiny and small size tumors by FCN models.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3