Differential effects of exercise and hormone treatment on spinal cord injury-induced changes in micturition and morphology of external urethral sphincter motoneurons

Author:

Hibbard Emily A.1,Du Xiaolong2,Zhang Yihong2,Xu Xiao-Ming2,Deng Lingxiao2,Sengelaub Dale R.1

Affiliation:

1. Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA

2. Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA

Abstract

Background: Spinal cord injury (SCI) results in lesions that destroy tissue and spinal tracts, leading to deficits in locomotor and autonomic function. We have previously shown that after SCI, surviving motoneurons innervating hindlimb muscles exhibit extensive dendritic atrophy, which can be attenuated by treadmill training or treatment with gonadal hormones post-injury. We have also shown that following SCI, both exercise and treatment with gonadal hormones improve urinary function. Animals exercised with forced running wheel training show improved urinary function as measured by bladder cystometry and sphincter electromyography, and treatment with gonadal hormones improves voiding patterns as measured by metabolic cage testing. Objective: The objective of the current study was to examine the potential protective effects of exercise or hormone treatment on the structure and function of motoneurons innervating the external urethral sphincter (EUS) after contusive SCI. Methods: Gonadally intact young adult male rats received either a sham or a thoracic contusion injury. Immediately after injury, one cohort of animals was implanted with subcutaneous Silastic capsules filled with estradiol (E) and dihydrotestosterone (D) or left blank; continuous hormone treatment occurred for 4 weeks post-injury. A separate cohort of SCI-animals received either 12 weeks of forced wheel running exercise or no exercise treatment starting two weeks after injury. At the end of treatment, urinary void volume was measured using metabolic cages and EUS motoneurons were labeled with cholera toxin-conjugated horseradish peroxidase, allowing for assessment of dendritic morphology in three dimensions. Results: Locomotor performance was improved in exercised animals after SCI. Void volumes increased after SCI in all animals; void volume was unaffected by treatment with exercise, but was dramatically improved by treatment with E + D. Similar to what we have previously reported for hindlimb motoneurons after SCI, dendritic length of EUS motoneurons was significantly decreased after SCI compared to sham animals. Exercise did not reverse injury-induced atrophy, however E + D treatment significantly protected dendritic length. Conclusions: These results suggest that some aspects of urinary dysfunction after SCI can be improved through treatment with gonadal hormones, potentially through their effects on EUS motoneurons. Moreover, a more comprehensive treatment regime that addresses multiple SCI-induced sequelae, i.e., locomotor and voiding deficits, would include both hormones and exercise.

Publisher

IOS Press

Reference76 articles.

1. Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels;Bamber,;European Journal of Neuroscience,2001

2. A sensitive and reliable locomotor rating scale for open field testing in rats;Basso,;Journal of Neurotrauma,1995

3. Estrogen receptor expression in lumbosacral dorsal root ganglion cells innervating the female rat urinary bladder;Bennett,;Autonomic Neuroscience,2003

4. Dendritic alteration of rat spinal motoneurons after dorsal horn mince: computer reconstruction of dendritic fields;Bernstein,;Experimental Neurology,1983

5. Spinal motoneuron dendritic alteration after spinal cord hemisection in the rat;Bernstein,;Experimental Neurology,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3