LSTM network optimization and task network construction based on heuristic algorithm

Author:

Zhang Zhongpeng12,Wang Guibao2

Affiliation:

1. Trine Engineering Institute, Shaanxi University of Technology, HanZhong, Shaanxi, China

2. School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China

Abstract

This work aims to advance the security management of complex networks to better align with evolving societal needs. The work employs the Ant Colony Optimization algorithm in conjunction with Long Short-Term Memory neural networks to reconstruct and optimize task networks derived from time series data. Additionally, a trend-based noise smoothing scheme is introduced to mitigate data noise effectively. The approach entails a thorough analysis of historical data, followed by applying trend-based noise smoothing, rendering the processed data more scientifically robust. Subsequently, the network reconstruction problem for time series data originating from one-dimensional dynamic equations is addressed using an algorithm based on the principles of Stochastic Gradient Descent (SGD). This algorithm decomposes time series data into smaller samples and yields optimal learning outcomes in conjunction with an adaptive learning rate SGD approach. Experimental results corroborate the remarkable fidelity of the weight matrix reconstructed by this algorithm to the true weight matrix. Moreover, the algorithm exhibits efficient convergence with increasing data volume, manifesting shorter time requirements per iteration while ensuring the attainment of optimal solutions. When the sample size remains constant, the algorithm’s execution time is directly proportional to the square of the number of nodes. Conversely, as the sample size scales, the SGD algorithm capitalizes on the availability of more information, resulting in improved learning outcomes. Notably, when the noise standard deviation is 0.01, models predicated on SGD and the Least-Squares Method (LSM) demonstrate reduced errors compared to instances with a noise standard deviation of 0.1, highlighting the sensitivity of LSM to noise. The proposed methodology offers valuable insights for advancing research in complex network studies.

Publisher

IOS Press

Reference39 articles.

1. Cost-based multi-parameter logistics routing path optimization algorithm;Dang;Mathematical Biosciences, and Engineering.,2019

2. Research on multi-feature data routing strategy in deduplication;He;Scientific Programming.,2020

3. Data aggregation using compressive sensing for energy efficient routing strategy;Puneeth;Procedia Computer Science.,2020

4. Novel cluster rotating and routing strategy for software-defined wireless sensor networks;Mugunthan;Journal of ISMAC.,2020

5. Resilient backpropagation approach in small-world feed-forward neural network topology based on Newman-Watts algorithm;Erkaymaz;Neural Computing, and Applications.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3