A portable plantar pressure system: Specifications, design, and preliminary results

Author:

Ostaszewski Michal1,Pauk Jolanta2,Lesniewski Kacper1

Affiliation:

1. Faculty of Electrical Engineering, Bialystok University of Technology, Bialystok, Poland

2. Biomedical Engineering Institute, Faculty of Mechanical Engineering, Bialystok University of Technology, Bialystok, Poland

Abstract

BACKGROUND: In recent years, there has been an increasing interest in developing in-shoe foot plantar pressure systems. Although such devices are not novel, devising insole devices for gait analysis is still an important issue. OBJECTIVE: The goal of this study is to develop a new portable system for plantar pressure distribution measurement based on a three-axis accelerometer. METHODS: The portable system includes: PJRC Teensy 3.6 microcontroller with 32-bit ARM Cortex-M4 microprocessor with a clock speed of 180 MHz; HC-11 radio modules (transmitter and receiver); a battery; a fixing band; pressure sensors; MPU-9150 inertial navigation module; and FFC tape. The pressure insole is leather-based and consists of seven layers. It is divided into 16 areas and the outcome of the system is data concerning plantar pressure distribution under foot during gait. The system was tested on 22 healthy volunteer subjects, and the data was compared with a commercially available system: Medilogic. RESULT: The SNR value for the proposed sensor is 28.27 dB. For a range of pressure of 30–100 N, the sensitivity is 0.0066 V/N while the linearity error is 0.05. The difference in plantar pressure from both the portable plantar pressure system and Medilogic is not statistically significant. CONCLUSION: The proposed system could be recommended for research applications both inside and outside of a typical gait laboratory.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

Reference20 articles.

1. Novel techniques for wireless motion capture system for monitoring rehabilitation of disabled persons in smart biuldings;Banach;Technology and Healt Care.,2018

2. Gait patterns classification based on cluster and bicluster analysis;Pauk;Biocybernetics and Biomedical Engineering.,2016

3. Measurement of human locomotion;Capozzo;Journal of Biomechanics.,2002

4. Research of the spatial-temporal gait parameters and pressure characteristic in spastic diplegia children;Pauk;Acta of Bioengineering and Biomechanics.,2016

5. Quanitative analysis of locomotion of basic research and clinical applications;Pedotti;Functional Neurology.,1992

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3