Surface imaging of breast implants using modern high-frequency ultrasound technology in comparison to high-end sonography with power analyses for B-scan optimization1

Author:

Diesch S.T.123,Jung F.123,Prantl L.123,Jung E.M.123

Affiliation:

1. Center for Plastic, Aesthetic, Hand & Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany

2. Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, Senftenberg, Germany

3. Department of Diagnostic Radiology and Interdisciplinary Ultrasound Department, University Hospital Regensburg, Regensburg, Germany

Abstract

AIM: This study aims to evaluate optimized breast implant surface-structure analysis by comparing high-end ultrasound technology with a new high frequency technique. This comparative study used new breast implants with different surfaces in an in vitro setting. METHODS: Nine idle silicon or polyurethane (PU) breast implants were examined by two investigators in an experimental in vitro study using two high-end ultrasound devices with multi-frequency transducers (6–15 MHz, 9–16 MHz, 12.5–33 MHz). The ultrasound B-Mode was optimized using tissue harmonic imaging (THI), speckle reduction imaging (SRI, level 0–5), cross beam (high, medium, low) and photopic. Using a standardized ultrasound protocol, the implants were examined in the middle (point of highest projection) and lateral, by two independent examiners. Image evaluation was performed on anonymized digital images in the PACS. The aim was to achieve an artifact-free recording of the surface structure, the surface coating, the total image structures and, as far as possible, an artifact-free internal representation of the implants. For independent surface evaluation a score was used (0 = undetectability of surface structures, rich in artifacts, 5 = best possible, artifact free image quality). RESULTS: The quality of ultrasound imaging of breast implant surfaces after the optimization of B-Scan differed significantly comparing high-end ultrasound technology with modern high-frequency ultrasound technology (p < 0,05). The following setting has been found to be the best setting with the highest image quality: B-Mode, SRI value 3, Crossbeam high level with color coded imaging for B- mode. In the total examined frequency range of 6–33 MHz, the highest image quality was found in the average frequency range of 12.5–33 MHz at both measured points. For both devices, device 1 (high-end) and device 2 (high frequency) ultrasound, the image quality was in the 12.5–33 MHz frequency range with an average image quality of 3.236. It was significantly higher, than in the lower frequency ranges and the same frequency range with THI. (p < 0,05).   The image quality of the high-end sonography device was superior to the conventional high-frequency ultrasound device in all frequency ranges. CONCLUSION: High-end ultrasound imaging technology was superior in the quality of implant surface evaluation in comparison to high-frequency ultrasound sonography. The gained knowledge can serve as a basis for further multicenter clinical application and studies with the aim to develop an objective, precise tool to evaluate the implant and the surrounding tissue with ultrasound.

Publisher

IOS Press

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Hematology,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3