Severity prediction in COVID-19 patients using clinical markers and explainable artificial intelligence: A stacked ensemble machine learning approach

Author:

Chadaga Krishnaraj1,Prabhu Srikanth1,Sampathila Niranjana2,Chadaga Rajagopala3

Affiliation:

1. Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India

2. Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India

3. Department of Mechanical and Industrial Engineering Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India

Abstract

The recent COVID-19 pandemic had wreaked havoc worldwide, causing a massive strain on already-struggling healthcare infrastructure. Vaccines have been rolled out and seem effective in preventing a bad prognosis. However, a small part of the population (elderly and people with comorbidities) continues to succumb to this deadly virus. Due to a lack of available resources, appropriate triaging and treatment planning are vital to improving outcomes for patients with COVID-19. Assessing whether a patient requires the hospital’s Intensive Care Unit (ICU) is very important since these units are not available for every patient. In this research, we automate this assessment with stacked ensemble machine learning models that predict ICU admission based on general patient laboratory data. We have built an explainable decision support model which automatically scores the COVID-19 severity for individual patients. Data from 1925 COVID-19 positive patients, sourced from three top-tier Brazilian hospitals, were used to design the model. Pearson’s correlation and mutual information were utilized for feature selection, and the top 24 features were chosen as input for the model. The final stacked model could provide decision support on whether an admitted COVID-19 patient would require the ICU or not, with an accuracy of 88%. Explainable Artificial Intelligence (EAI) was used to undertake system-level insight discovery and investigate various clinical variables’ impact on decision-making. It was found that the most critical factors were respiratory rate, temperature, blood pressure, lactate dehydrogenase, hemoglobin, and age. Healthcare facilities can use the proposed approach to categorize COVID-19 patients and prevent COVID-19 fatalities.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3