Deep Neural Classification of Darknet Traffic

Author:

Alimoradi Mahmoud1,Zabihimayvan Mahdieh2,Daliri Arman1,Sledzik Ryan2,Sadeghi Reza3

Affiliation:

1. Independent researchers

2. Department of Computer Science, Central Connecticut State University, New Britain, CT, USA

3. School of Computer Science and Mathematics, Marist College, Poughkeepsie, NY, USA

Abstract

Darknet is an encrypted portion of the internet for users who intend to hide their identity. Darknet’s anonymous nature makes it an effective tool for illegal online activities such as drug trafficking, terrorist activities, and dark marketplaces. Darknet traffic recognition is essential in monitoring and detection of malicious online activities. However, due to the anonymizing strategies used for the darknet to conceal users’ identity, traffic recognition is practically challenging. The state-of-the-art recognition systems are empowered by artificial intelligence techniques to segregate the Darknet traffic data. Since they rely on processed features and balancing techniques, these systems suffer from low performance, inability to discover hidden relations in data, and high computational complexity. In this paper, we propose a novel decision support system named Tor-VPN detector to classify raw darknet traffic into four classes of Tor, non-Tor, VPN, and non-VPN. The detector discovers complex non-linear relations from raw darknet traffic by our deep neural network architecture with 79 input artificial neurons and 6 hidden layers. To evaluate the performance of the proposed method, analyses are conducted on a benchmark dataset of DIDarknet. Our model outperforms the state-of-the-art neural network for darknet traffic classification with an accuracy of 96%. These results demonstrate the power of our model in handling darknet traffic without using any preprocessing techniques, like feature extraction or balancing techniques.

Publisher

IOS Press

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Restoration of vibration-induced remote sensing images based on CNN identification: a comparative approach;International Journal of Image and Data Fusion;2024-02-24

2. Darknet Traffic Analysis: A Systematic Literature Review;IEEE Access;2024

3. LIDarknet: Experimenting the Power of Ensemble Learning in the Classification of Network Traffic;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3