Affiliation:
1. Independent researchers
2. Department of Computer Science, Central Connecticut State University, New Britain, CT, USA
3. School of Computer Science and Mathematics, Marist College, Poughkeepsie, NY, USA
Abstract
Darknet is an encrypted portion of the internet for users who intend to hide their identity. Darknet’s anonymous nature makes it an effective tool for illegal online activities such as drug trafficking, terrorist activities, and dark marketplaces. Darknet traffic recognition is essential in monitoring and detection of malicious online activities. However, due to the anonymizing strategies used for the darknet to conceal users’ identity, traffic recognition is practically challenging. The state-of-the-art recognition systems are empowered by artificial intelligence techniques to segregate the Darknet traffic data. Since they rely on processed features and balancing techniques, these systems suffer from low performance, inability to discover hidden relations in data, and high computational complexity. In this paper, we propose a novel decision support system named Tor-VPN detector to classify raw darknet traffic into four classes of Tor, non-Tor, VPN, and non-VPN. The detector discovers complex non-linear relations from raw darknet traffic by our deep neural network architecture with 79 input artificial neurons and 6 hidden layers. To evaluate the performance of the proposed method, analyses are conducted on a benchmark dataset of DIDarknet. Our model outperforms the state-of-the-art neural network for darknet traffic classification with an accuracy of 96%. These results demonstrate the power of our model in handling darknet traffic without using any preprocessing techniques, like feature extraction or balancing techniques.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Restoration of vibration-induced remote sensing images based on CNN identification: a comparative approach;International Journal of Image and Data Fusion;2024-02-24
2. Darknet Traffic Analysis: A Systematic Literature Review;IEEE Access;2024
3. LIDarknet: Experimenting the Power of Ensemble Learning in the Classification of Network Traffic;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14