Application of texture analysis based on T2-weighted magnetic resonance images in discriminating Gleason scores of prostate cancer

Author:

Pan Ruigen1,Yang Xueli2,Shu Zhenyu3,Gu Yifeng1,Weng Lihua1,Jia Yuezhu4,Feng Jianju1

Affiliation:

1. Department of Radiology, Zhuji affiliated hospital of Shaoxing University, Shaoxing, Zhejiang, China

2. Department of Radiology, Zhuji Fourth People’s hospital, Zhuji, Zhejiang, China

3. Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China

4. Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China

Abstract

OBJECTIVE: To investigate the value of texture analysis in magnetic resonance images for the evaluation of Gleason scores (GS) of prostate cancer. METHODS: Sixty-six prostate cancer patients are retrospective enrolled, which are divided into five groups namely, GS = 6, 3 + 4, 4 + 3, 8 and 9–10 according to postoperative pathological results. Extraction and analysis of texture features in T2-weighted MR imaging defined tumor region based on pathological specimen after operation are performed by texture software OmniKinetics. The values of texture are analyzed by single factor analysis of variance (ANOVA), and Spearman correlation analysis is used to study the correlation between the value of texture and Gleason classification. Receiver operating characteristic (ROC) curve is then used to assess the ability of applying texture parameters to predict Gleason score of prostate cancer. RESULTS: Entropy value increases and energy value decreases as the elevation of Gleason score, both with statistical difference among five groups (F = 10.826, F = 2.796, P < 0.05). Energy value of group GS = 6 is significantly higher than that of groups GS = 8 and 9–10 (P < 0.005), which is similar between three groups (GS = 3 + 4, 8 and 9–10). The entropy and energy values correlate with GS (r = 0.767, r = –0.692, P < 0.05). Areas under ROC curves (AUC) of combination of entropy and energy are greater than that of using energy alone between groups GS = 6 and ≥7. Analogously, AUC of combination of entropy and energy are significantly higher than that of using entropy alone between groups GS≤3 + 4 and ≥4 + 3, as well as between groups GS≤4 + 3 and ≥8. CONCLUSION: Texture analysis on T2-weighted images of prostate cancer can evaluate Gleason score, especially using the combination of entropy and energy rendering better diagnostic efficiency.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3