Novel odor sensing intelligence and surveillance capabilities in controller-responder robots

Author:

Gandhi Serena1,Abraham Ajith2

Affiliation:

1. Santa Clara High School, Santa Clara, CA, USA

2. School of Computer Science Engineering and Technology, Bennett University, Greater Noida, India

Abstract

The rise in global travel has led to an increased need for heightened security measures at airports. Despite the best efforts of airport security officers, in the past year, hundreds of kilograms of illegal drugs and thousands of agricultural invasive species have found their way into the country, posing a severe threat to public safety and the environment. Moreover, human threats pose a significant risk to civil aviation, reinforcing the need for advanced security technology. In response to these challenges, NOSI (Novel Odor Sensing Intelligence) and ROSI (Reconnaissance Operations Security Intelligence), intelligence surveillance systems consisting of semi-autonomous controller-responder robots, were developed as a proof of concept to supplement the efforts of security and K-9 (police dogs) operators at airports. NOSI is equipped with multi-channel gas sensors for odor detection, enabling it to identify illegal drugs and invasive species in the baggage handling process, while ROSI is equipped with computer vision to identify individuals already in the government’s database of persons of interest. These coordinated robots also provide travelers with important information pertaining to their journey and allow them to trigger emergency alerts. The robots were tested in a custom-designed test bed that replicated both the behind-the-scenes baggage handling and front-office customer service operations of an airport, thus simulating a realistic airport-like setting. Based on design criteria, NOSI and ROSI demonstrated success rates of 73.4 percent and 69.8 percent, respectively. Improvements in areas of robot stability, sensor accuracy, and feature expansion were documented for further development. In conclusion, the NOSI and ROSI framework can enhance the efficiency and accuracy of airport infrastructure monitoring and supplement the capabilities of human and K9 operators. Overall, this approach can potentially revolutionize operations in various infrastructures and represents the future of human-robot collaboration.

Publisher

IOS Press

Subject

General Medicine

Reference16 articles.

1. Unintended Consequences: Why the Biden Administration’s Proposed Aviation Consumer Protection Initiatives Will Worsen the Air Travel Environment.;Deutsch;The Air and Space.,2023

2. Toward an epidemiology of safety and security risks: an organizational vulnerability assessment in international airports;Bongiovanni;Risk Analysis,2019

3. Duty free: Turning the criminological spotlight on special economic zones;Hall;The British Journal of Criminology,2023

4. Invasion success and impacts depend on different characteristics in non-native plants;Ni;Divers Distrib.,2021

5. Mechanisms underlying the impacts of exotic plant invasions;Levine;Proceedings of the Royal Society B: Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3