An optimized efficient combinatorial learning using deep neural network and statistical techniques

Author:

V K Jyothi,Sarma Guda Ramachandra Kaladhara

Abstract

Research work is to discover the rapid requirement of Artificial Intelligence and Statistics in medical research. Objective is to design a diagnostic prediction system that can detect and predict diseases at an early stage from clinical data sets. Some of major diseases leading reasons of death globally are heart disease and cancer. There are different kinds of cancer, in this study we focused on breast cancer and heart disease. Prediction of these diseases at a very early stage is curable and preventive diagnosis can control death rate. Designed two Artificial Intelligence systems for prediction of above-mentioned diseases using statistics and Deep neural networks (i) Combinatorial Learning (CLSDnn) and (ii) an optimized efficient Combinatorial Learning (eCLSDnn). To evaluate the performance of the proposed system conducted experiments on three different data sets, in which two data sets are of breast cancer namely, Wisconsin-data set of UCI Machine Learning repository and AI for Social Good: Women Coders’ Bootcamp data set and Cleveland heart disease data set of UCI Machine Learning repository. The proposed architectures of binary classification are validated for 70%–30% data splitting and on K-fold cross validation. Recognition of Malignant cancerous tumors CLSDnn model achieved maximum accuracy of 98.53% for Wisconsin data set, 95.32% for AI for Social Good: Women Coders’ data set and 96.72% for Cleveland data set. Recognition of Malignant cancerous tumors eCLSDnn model achieved 99.36% for Wisconsin data set, 97.12% for AI for Social Good: Women Coders’ data set and 99.56% for the Cleveland heart disease data set.

Publisher

IOS Press

Subject

General Medicine

Reference37 articles.

1. Using three machine learning techniques for predicting breast cancer recurrence;Ahmad;J Health Med Inform,2013

2. Comparing supervised and semi-supervised machine learning models on diagnosing breast cancer;Al-Azzam;Annals of Medicine and Surgery,2021

3. A hybrid multi-stage learning technique based on brain storming optimization algorithm for breast cancer recurrence prediction;Alwohaibi;Journal of King Saud University-Computer and Information Sciences,2022

4. Coronary artery heart disease prediction: A comparative study of computational intelligence techniques;Ayon;IETE Journal of Research,2022

5. A historic and scientific review of breast cancer: The next global healthcare challenge;Sven;In-ternational Journal of Gynecology & Obstetrics,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3