Recommending scientific datasets using author networks in ensemble methods

Author:

Wang Xu1ORCID,van Harmelen Frank1ORCID,Huang Zhisheng2ORCID

Affiliation:

1. Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands and Discovery Lab, Elsevier, The Netherlands

2. Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

Abstract

Open access to datasets is increasingly driving modern science. Consequently, discovering such datasets is becoming an important functionality for scientists in many different fields. We investigate methods for dataset recommendation: the task of recommending relevant datasets given a dataset that is already known to be relevant. Previous work has used meta-data descriptions of datasets and interest profiles of authors to support dataset recommendation. In this work, we are the first to investigate the use of co-author networks to drive the recommendation of relevant datasets. We also investigate the combination of such co-author networks with existing methods, resulting in three different algorithms for dataset recommendation. We obtain experimental results on a realistic corpus which show that only the ensemble combination of all three algorithms achieves sufficiently high precision for the dataset recommendation task.

Publisher

IOS Press

Subject

General Medicine

Reference42 articles.

1. Dataset Recommendation via Variational Graph Autoencoder

2. Scientific paper recommendation: A survey;Bai;IEEE Access,2019

3. Big data analytics for Earth sciences: The EarthServer approach;Baumann;International Journal of Digital Earth,2016

4. A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston and O. Yakhnenko, Translating embeddings for modeling multi-relational data, in: Proceedings of the 26th International Conference on Neural Information Processing Systems. NIPS’13, Vol. 2, Curran Associates Inc., Red Hook, NY, USA, 2013, pp. 2787–2795, available from: https://dl.acm.org/doi/10.5555/2999792.2999923.

5. Google Dataset Search: Building a search engine for datasets in an open Web ecosystem

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3