Towards time-evolving analytics: Online learning for time-dependent evolving data streams

Author:

Ziffer Giacomo1ORCID,Bernardo Alessio1ORCID,Della Valle Emanuele1ORCID,Cerqueira Vitor2ORCID,Bifet Albert3ORCID

Affiliation:

1. DEIB, Politecnico di Milano, Milano, Italy

2. Dalhousie University, Halifax, Canada

3. University of Waikato, Hamilton, New Zealand

Abstract

Traditional historical data analytics is at risk in a world where volatility, uncertainty, complexity, and ambiguity are the new normal. While Streaming Machine Learning (SML) and Time-series Analytics (TSA) attack some aspects of the problem, we still need a comprehensive solution. SML trains models using fewer data and in a continuous/adaptive way relaxing the assumption that data points are identically distributed. TSA considers temporal dependence among data points, but it assumes identical distribution. Every Data Scientist fights this battle with ad-hoc solutions. In this paper, we claim that, due to the temporal dependence on the data, the existing solutions do not represent robust solutions to efficiently and automatically keep models relevant even when changes occur, and real-time processing is a must. We propose a novel and solid scientific foundation for Time-Evolving Analytics from this perspective. Such a framework aims to develop the logical, methodological, and algorithmic foundations for fast, scalable, and resilient analytics.

Publisher

IOS Press

Subject

General Medicine

Reference46 articles.

1. O. Anava, E. Hazan, S. Mannor and O. Shamir, Online learning for time series prediction, in: COLT, JMLR Workshop and Conference Proceedings, Vol. 30, JMLR.org, 2013, pp. 172–184, available at http://proceedings.mlr.press/v30/Anava13.html.

2. B. Babcock, M. Datar, R. Motwani et al., Load shedding techniques for data stream systems, in: Proceedings of the 2003 Workshop on Management and Processing of Data Streams, Vol. 577, Citeseer, 2003, available at http://www-cs-students.stanford.edu/~datar/papers/mpds03.pdf.

3. AutoML for Stream k-Nearest Neighbors Classification

4. Classifier Concept Drift Detection and the Illusion of Progress

5. Learning from Time-Changing Data with Adaptive Windowing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. cPNN: Continuous Progressive Neural Networks for Evolving Streaming Time Series;Advances in Knowledge Discovery and Data Mining;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3