Multiphysical field simulation of exchange current density effection on solid oxide fuel cell (SOFC) with methane mixture fuel

Author:

Wei Mingrui1,Chen Yuyao1,Wang Wenhui1,Guo Guanlun1

Affiliation:

1. , Wuhan University of Technology, , China

Abstract

In order to understand the performance and internal parameter distribution of SOFC fueled by methane mixture in detail, the paper uses numerical simulation method to conduct three-dimensional multiphysics coupling simulation on a single-channel anode-supported planar SOFC. The uniqueness of the three-dimensional model is that it employs the anode exchange current density from the methane gas mixture and considers the electrochemical oxidation of carbon monoxide. The numerical model proposed in this work provides more accurate simulation results. The results show that compared with the model that uses the exchange current density equation from humidified hydrogen for simulation, the model that uses the exchange current density equation from methane mixture to simulate the performance curve is closer to the experimental value. When using methane gas mixture as fuel, the maximum temperature difference along the flow direction is 10 K and the maximum power density can reach 0.482 W/cm2. In the thickness direction of the SOFC, the current density is not much different at the inlet and outlet. Along the direction of flow, the current density decreases near the inlet and outlet. Reducing the rate of fuel flow or increasing gas inflow temperature can improve SOFC performance.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3