Affiliation:
1. , Zhengzhou University of Light Industry, , China
2. , , China
3. , Shandong University of Science and Technology, , China
Abstract
Wireless power transfer (WPT) technology has been widely used in industrial and household fields. This technology is of great significance in the field of motor drives. However, if the WPT technology is applied to the motor drive and control system, power and control signals need to be transmitted at the same time, which will cause the problem of mutual interference between signals of different frequencies, and will also increase the difficulty of frequency decomposition on the secondary side. To solve the above problems, a dual-frequency simultaneous wireless information and power transfer (SWIPT) system using a tapped coil structure scheme is proposed and the design principle of the tapped coil is given. Based on this scheme, a multi-frequency pulse width modulation (MFPWM) method is used to generate two components of different frequencies by the same inverter, which are automatically decoupled by the tapped coil, and finally transmitted to drive and control the motor. A closed-loop control strategy is used to solve the problem of precise motor speed control when the driving voltage of the wireless motor fluctuates. In the experiment, the motor speed increased from 1965 rpm to 2265 rpm, and the DC voltage corresponding to the set reference speed increased from 1.26 V to 2.30 V. The experimental results show that the scheme can control the BLDC motor speed stably and accurately.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献