A methodology for transformer fault diagnosis based on the feature extraction from DGA data
Author:
Affiliation:
1. , Zhejiang University, , China
2. , China Jiliang University, , China
Abstract
Publisher
IOS Press
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Reference11 articles.
1. (Fault) detection and diagnosis in power transformers: A comprehensive review and classification of publications and methods;Abbasi;Electr. Power Syst. Res.,2022
2. Advances in DGA based condition monitoring of transformers: A review;Wani;Renew. Sust. Energ. Rev.,2021
3. Optimal dissolved gas ratios selected by genetic algorithm for power transformer fault diagnosis based on support vector machine;Li;IEEE Trans. Dielectr. Electr. Insul.,2016
4. Dynamic fault prediction of power transformers based on Lasso regression and change point detection by dissolved gas analysis;Jiang;IEEE Trans. Dielectr. Electr. Insul.,2020
5. Hybrid feature selection approach for power transformer fault diagnosis based on support vector machine and genetic algorithm;Kari;IET Gener. Transm. Distrib.,2018
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3