An application for the earthquake spectral and source parameters and prediction using adaptive neuro fuzzy inference system and machine learning

Author:

Rana Anurag1,Vaidya Pankaj1,Kautish Sandeep2,Kumar Manoj34,Khaitan Supriya5

Affiliation:

1. Shoolini University

2. LBEF Campus Kathmandu Nepal

3. University of Wollongong in Dubai

4. Middle East University, Jordan

5. Pillai College of Engineering, New Panvel

Abstract

Parameters related to earthquake origins can be broken down into two broad classes: source location and source dimension. Scientists use distance curves versus average slowness to approximate the epicentre of an earthquake. The shape of curves is the complex function to the epicentral distance, the geological structures of Earth, and the path taken by seismic waves. Brune’s model for source is fitted to the measured seismic wave’s displacement spectrum in order to estimate the source’s size by optimising spectral parameters. The use of ANFIS to determine earthquake magnitude has the potential to significantly alter the playing field. ANFIS can learn like a person using only the data that has already been collected, which improves predictions without requiring elaborate infrastructure. For this investigation’s FIS development, we used a machine with Python 3x running on a core i5 from the 11th generation and an NVIDIA GEFORCE RTX 3050ti GPU processor. Moreover, the research demonstrates that presuming a large number of inputs to the membership function is not necessarily the best option. The quality of inferences generated from data might vary greatly depending on how that data is organised. Subtractive clustering, which does not necessitate any type of normalisation, can be used for prediction of earthquakes magnitude with a high degree of accuracy. This study has the potential to improve our ability to foresee quakes larger than magnitude 5. A solution is not promised to the practitioner, but the research is expected to lead in the right direction. Using Brune’s source model and high cut-off frequency factor, this article suggests using machine learning techniques and a Brune Based Application (BBA) in Python. Application accept input in the Sesame American Standard Code for Information Interchange Format (SAF). An application calculates the spectral level of low frequency displacement (Ω0), the corner frequency at which spectrum decays with a rate of 2(fc), the cut-off frequency at which spectrum again decays (fmax), and the rate of decay above fmax on its own (N). Seismic moment, stress drop, source dimension, etc. have all been estimated using spectral characteristics, and scaling laws. As with the maximum frequency, fmax, its origin can be determined through careful experimentation and study. At some sites, the moment magnitude was 4.7 0.09, and the seismic moment was in the order of (107 0.19) 1023. (dyne.cm). The stress reduction is 76.3 11.5 (bars) and the source-radius is (850.0 38.0) (m). The ANFIS method predicted pretty accurately as the residuals were distributed uniformly near to the centrelines. The ANFIS approach made fairly accurate predictions, as evidenced by the fact that the residuals were distributed consistently close to the centerlines. The R2, RMSE, and MAE indices demonstrate that the ANFIS accuracy level is superior to that of the ANN.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference31 articles.

1. A scaling law for the spectra of large earthquakes;Joyner;Bulletin of the Seismological Society of America,1984

2. Scaling law of seismic;Aki;Journal of Geophysical Research,1967

3. Some studies in machine learning using the game of checkers;Samuel;IBM J. Res. Dev.,1959

4. Fmax;Hanks;Bulletin of the Seismological Society of America,1982

5. A model for the shape of the fourier amplitude spectrum of acceleration at high frequencies;Anderson;Bulletin of the Seismological Society of America,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3