Multichannel cross-fusional convolutional neural networks

Author:

Shan Chuanhui1,Ou Jun2,Chen Xiumei3

Affiliation:

1. College of Electrical Engineering, Anhui Polytechnic University, Wuhu, Anhui Province, China

2. Hainan College of Software Technology, Qionghai, Hainan Province, China

3. College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui Province, China

Abstract

As one of the main methods of information fusion, artificial intelligence class fusion algorithm not only inherits the powerful skills of artificial intelligence, but also inherits many advantages of information fusion. Similarly, as an important sub-field of artificial intelligence class fusion algorithm, deep learning class fusion algorithm also inherits advantages of deep learning and information fusion. Hence, deep learning fusion algorithm has become one of the research hotspots of many scholars. To solve the problem that the existing neural networks are input into multiple channels as a whole and cannot fully learn information of multichannel images, Shan et al. proposed multichannel concat-fusional convolutional neural networks. To mine more multichannel images’ information and further explore the performance of different fusion types, the paper proposes new fusional neural networks called multichannel cross-fusion convolutional neural networks (McCfCNNs) with fusion types of “R+G+B/R+G+B/R+G+B” and “R+G/G+B/B+R” based on the tremendous strengths of information fusion. Experiments show that McCfCNNs obtain 0.07-6.09% relative performance improvement in comparison with their corresponding non-fusion convolutional neural networks (CNNs) on diverse datasets (such as CIFAR100, SVHN, CALTECH256, and IMAGENET) under a certain computational complexity. Hence, McCfCNNs with fusion types of “R+G+B/R+G+B/R+G+B” and “R+G/G+B/B+R” can learn more fully multichannel images’ information, which provide a method and idea for processing multichannel information fusion, for example, remote sensing satellite images.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference41 articles.

1. A survey on machine learning for data fusion;Meng;Information Fusion,2020

2. A new view of multisensor data fusion: research on generalized fusion;Chen;Mathematical Problems in Engineering,2021

3. A review of data fusion models and arehiteetures: Towards engineering guidelines;Esteban;Neural Computing and Applications,2005

4. Intelligence fusion pushed;Waltz;Aviation Week and Space Technology,1979

5. Burt P.J. , Multiresolution image processing and analysis, Berlin: Springer-Verlag, 6–35 (1984).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3