Intrusion detection using enhanced genetic sine swarm algorithm based deep meta-heuristic ANN classifier on UNSW-NB15 and NSL-KDD dataset

Author:

Kayyidavazhiyil Abhilash1

Affiliation:

1. Department of Computer Science and Mathematics, LiverPool JohnMoore University, UK

Abstract

Prediction of malicious attacks and monitoring of network behaviour is significant for providing security and mitigating the loss of credential information. In order to monitor network traffic and identify different types of attacks in the network, numerous existing algorithms have been provided for classifying unauthorized access from the authorized access. However, the traditional techniques have faced complications in satisfying the accuracy while making predictions of malicious activities. Detection accuracy have been addressed as a drawback which hinders in making appropriate identification of threats. In order to overcome such challenges, the proposed work is designed with effective IDS mechanism for detecting and classifying the attacks taken from the UNSW-NB15 and NSL-KDD dataset. IDS (Intrusion Detection System) implementation is accomplished with three stages such as pre-processing is the initial phase in which scaling re-sizing of all images to similar width and height. Process of checking missing values reduces the computational complexities and enhances accuracy. Second stage is the novel feature-selection process accomplished by E-GSS (Enhanced Genetic Sine Swarm Intelligence) for selecting significant and optimal features. Finally, classification is the final phase in which intrusion is classified using novel DMH-ANN (Deep Meta-Heuristics Artificial Neural Network) which is internally being compared to three classifiers such as RF (Random Forest), NB (Naïve Bayes) and XG-Boost (Extreme Gradient). Experimental evaluation is carried out with the performance metrics such as accuracy, precision and recall and compared with existing algorithms for exhibiting the effectiveness of the proposed model. The research outcome reveals its efficiency in detecting and classifying attacks with greater accuracy.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3