Affiliation:
1. Department of Electronics and Communication Engineering, M. Kumarasamy College of Engineering, Karur, Tamilnadu, India
2. Department of Electronics and Communication Engineering, Sri Eshwar College of Engineering, Coimbatore, Tamilnadu, India
Abstract
Spectrum sensing will be an essential component in developing cognitive radio networks, which will be an essential component of the subsequent generation of wireless communication systems. Over the course of several decades, a great deal of different strategies, including cyclo-stationary, energy detectors, and matching filters, have been put up as potential solutions. Obviously, each of these methods comes with a few of negatives that you have to take into consideration. When the Signal-to-Noise Ratio (SNR) changes, energy detectors work poorly; cyclo-stationary detectors are technically sophisticated; and employing matching filters needs experience with Primary User (PU) signals. Researchers have recently been devoting a great deal of attention to Machine Learning (ML) and Deep Learning (DL) algorithms as a result of the potential uses that these algorithms may have in the development of exceptionally accurate spectrum sensing models. The capacity to learn from data in a way that traditional learning algorithms are unable to has led to the rise in prominence of these types of algorithms. The Hybrid Model of Improved Long Short Term Memory with Improved Extreme Learning Models (HILSTM-IELM), to be more specific, is what is being suggested since it reduces the amount of energy that is used during data transmission as well as the range and the duty cycle. Because of this, the disadvantage in existing methodology, proposed technique reduced to a certain level in energy consumption. In the last step of this analysis, the performance of the HILSTM-IELM-based spectrum sensing is compared to that of a variety of different methods that are currently in use. According to the findings of recent studies, the spectrum sensing method that was created provides superior performance to that of technologies in terms of the accuracy, sensitivity, and specificity of data transmission systems.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献