Hybrid statistical and recurrent neural network architecture implementation in FPGA device used for severe acute respiratory syndrome coronavirus detector

Author:

Senthilkumar V.M.1,Thenmozhi S.2,Kumudavalli M.V.3,Yedukondalu U.4

Affiliation:

1. Department of ECE, Vivekanandha College of Engineering for Women (Autonomous), Namakkal, Tamilnadu, India

2. Department of ECE, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India

3. Department of Computer Applications, Dayananda Sagar College of Arts Science and Commerce, Bangalore, Karnataka, India

4. Department of ECE, MVR College of Engineering & Technology (Autonomous) Paritala, Andhra Pradesh, India

Abstract

The Severe Acute Respiratory Syndrome (SARS) are caused by the strain of the corona virus causes cold and influenza. In recent years, the covid pandemic spread throughout the world killing millions of people. The fatality rate has increased and it also leads to pneumonia for breathing problems. Several methods like wavelet filter banks, time series methods, Neural networks was developed for the diagnosis of severe acute respiratory syndrome coronavirus, still the accuracy can be improved. Less works is carried out for hardware implementation for syndrome detectors. This proposed work represents the FPGA (Field Programmable Gate Array) implementation of the hybrid method using Convolutional Recurrent neural network and Independent Components Analysis (ICA). The architecture extracts the ccomplex features from ECG (Electrocardiogram) samples. The hybrid Statistical and Recurrent Neural Network (RNN) Architecture implementation in a real time hardware detects the Severe Acute Respiratory Syndrome presented. The proposed method can be implemented in MATLAB, Embedded and DSP (Digital Signal Processor). But, the FPGAs consume less power computationally efficient. Since, ICA is an efficient method due to its blind source separation property accumulate the extraction of features accurate described. The mathematical model for the analysis of ECG signal using RNN is analyzed and based on that the proposed model is selected. On investigation the hybrid method using the statistical and neural network model is efficient in the analysis of biomedical signal especially ECG. The proposed ICA based RNN model is mathematically evaluated and tested with real time data. For implementation, Quartus software is used for effectiveness of the proposed model.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3