Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations

Author:

Caraballo Tomás1,Carvalho Alexandre N.2,Langa José A.1,Oliveira-Sousa Alexandre N.12

Affiliation:

1. Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Spain. E-mails: caraball@us.es, langa@us.es

2. Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Brazil. E-mails: andcarva@icmc.usp.br, alexandrenosousa@gmail.com

Abstract

In this paper, we study stability properties of nonuniform hyperbolicity for evolution processes associated with differential equations in Banach spaces. We prove a robustness result of nonuniform hyperbolicity for linear evolution processes, that is, we show that the property of admitting a nonuniform exponential dichotomy is stable under perturbation. Moreover, we provide conditions to obtain uniqueness and continuous dependence of projections associated with nonuniform exponential dichotomies. We also present an example of evolution process in a Banach space that admits nonuniform exponential dichotomy and study the permanence of the nonuniform hyperbolicity under perturbation. Finally, we prove persistence of nonuniform hyperbolic solutions for nonlinear evolution processes under perturbations.

Publisher

IOS Press

Subject

General Mathematics

Reference24 articles.

1. New conditions for (non)uniform behaviour of linear cocycles over flows;Alhalawa;Journal of Mathematical Analysis and Applications,2019

2. The concept of spectral dichotomy for linear difference equations II;Aulbach;Journal of Difference Equations and Applications,1996

3. Exponential dichotomies with respect to a sequence of norms and admissibility

4. Tempered exponential dichotomies: Admissibility and stability under perturbations;Barreira;Dynamical Systems,2016

5. Nonuniform behavior and robustness;Barreira;Journal of Differential Equations,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3