A system of local/nonlocal p-Laplacians: The eigenvalue problem and its asymptotic limit as p → ∞

Author:

Buccheri S.1,da Silva J.V.2,de Miranda L.H.3

Affiliation:

1. Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria. E-mail: stefano.buccheri@univie.ac.at

2. Departamento de Matemática, Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, UNICAMP, Cidade Universitária Zeferino Vaz, 13083-859, Campinas, SP, Brazil. E-mail: jdasilva@unicamp.br

3. Departamento de Matemática, Instituto de Ciências Exatas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, Brazil. E-mail: demiranda@unb.br

Abstract

In this work, given p ∈ ( 1 , ∞ ), we prove the existence and simplicity of the first eigenvalue λ p and its corresponding eigenvector ( u p , v p ), for the following local/nonlocal PDE system (0.1) − Δ p u + ( − Δ ) p r u = 2 α α + β λ | u | α − 2 | v | β u in  Ω − Δ p v + ( − Δ ) p s v = 2 β α + β λ | u | α | v | β − 2 v in  Ω u = 0 on  R N ∖ Ω v = 0 on  R N ∖ Ω , where Ω ⊂ R N is a bounded open domain, 0 < r , s < 1 and α ( p ) + β ( p ) = p. Moreover, we address the asymptotic limit as p → ∞, proving the explicit geometric characterization of the corresponding first ∞-eigenvalue, namely λ ∞ , and the uniformly convergence of the pair ( u p , v p ) to the ∞-eigenvector ( u ∞ , v ∞ ). Finally, the triple ( u ∞ , v ∞ , λ ∞ ) verifies, in the viscosity sense, a limiting PDE system.

Publisher

IOS Press

Subject

General Mathematics

Reference41 articles.

1. A direct uniqueness proof for equations involving the p-Laplace operator;Belloni;Manuscripta Math.,2002

2. Limits as p → ∞ of Δ p u = f and related extremal problems;Bhattacharya;Rend. Sem. Mat. Univ. Politec. Torino,1991

3. A limiting free boundary problem with gradient constraint and tug-of-war games;Blanc;Ann. Mat. Pura Appl. (4),2019

4. The limit as p → ∞ in the eigenvalue problem for a system of p-Laplacians;Bonheure;Ann. Mat. Pura Appl. (4),2016

5. Remarks on the strong maximum principle;Brezis;Differential Integral Equations,2003

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3