On the approximation of vorticity fronts by the Burgers–Hilbert equation

Author:

Hunter John K.1,Moreno-Vasquez Ryan C.1,Shu Jingyang2,Zhang Qingtian3

Affiliation:

1. Department of Mathematics, University of California at Davis, CA, USA. E-mails: jkhunter@ucdavis.edu, rcmorenovasquez@math.ucdavis.edu

2. Department of Mathematics, Temple University, PA, USA. E-mail: jyshu@temple.edu

3. Department of Mathematics, West Virginia University, WV, USA. E-mail: qingtian.zhang@mail.wvu.edu

Abstract

This paper proves that the motion of small-slope vorticity fronts in the two-dimensional incompressible Euler equations is approximated on cubically nonlinear timescales by a Burgers–Hilbert equation derived by Biello and Hunter (2010) using formal asymptotic expansions. The proof uses a modified energy method to show that the contour dynamics equations for vorticity fronts in the Euler equations and the Burgers–Hilbert equation are both approximated by the same cubically nonlinear asymptotic equation. The contour dynamics equations for Euler vorticity fronts are also derived.

Publisher

IOS Press

Subject

General Mathematics

Reference31 articles.

1. H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, Berlin, Heidelberg, 2011.

2. Nonlinear Hamiltonian waves with constant frequency and surface waves on vorticity discontinuities;Biello;Comm. Pure Appl. Math,2010

3. Global existence of weak solutions for the Burgers–Hilbert equation;Bressan;SIAM J. Math. Anal.,2014

4. Piecewise smooth solutions to the Burgers–Hilbert equation;Bressan;Comm. Math. Sci.,2017

5. Singularity formations for a surface wave model;Castro;Nonlinearity,2010

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global solutions of quasi-geostrophic shallow-water fronts;Journal of Differential Equations;2024-10

2. Solitary solutions to the steady Euler equations with piecewise constant vorticity in a channel;Journal of Differential Equations;2024-08

3. Global solutions for a family of GSQG front equations;Discrete and Continuous Dynamical Systems;2024

4. Stability of traveling waves for the Burgers–Hilbert equation;Analysis & PDE;2023-11-11

5. Highest Cusped Waves for the Burgers–Hilbert Equation;Archive for Rational Mechanics and Analysis;2023-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3