An empirical evaluation of cost-based federated SPARQL query processing engines

Author:

Qudus Umair1,Saleem Muhammad2,Ngonga Ngomo Axel-Cyrille3,Lee Young-Koo1

Affiliation:

1. DKE, Kyung Hee University, South Korea. E-mails: umair.qudus@khu.ac.kr, yklee@khu.ac.kr

2. AKSW, Leipzig, Germany. E-mail: saleem@informatik.uni-leipzig.de

3. University of Paderborn, Germany. E-mail: axel.ngonga@upb.de

Abstract

Finding a good query plan is key to the optimization of query runtime. This holds in particular for cost-based federation engines, which make use of cardinality estimations to achieve this goal. A number of studies compare SPARQL federation engines across different performance metrics, including query runtime, result set completeness and correctness, number of sources selected and number of requests sent. Albeit informative, these metrics are generic and unable to quantify and evaluate the accuracy of the cardinality estimators of cost-based federation engines. To thoroughly evaluate cost-based federation engines, the effect of estimated cardinality errors on the overall query runtime performance must be measured. In this paper, we address this challenge by presenting novel evaluation metrics targeted at a fine-grained benchmarking of cost-based federated SPARQL query engines. We evaluate five cost-based federated SPARQL query engines using existing as well as novel evaluation metrics by using LargeRDFBench queries. Our results provide a detailed analysis of the experimental outcomes that reveal novel insights, useful for the development of future cost-based federated SPARQL query processing engines.

Publisher

IOS Press

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Reference49 articles.

1. A system for querying linked data at scale;Abdelaziz;Proc. VLDB Endow.,2017

2. ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints

3. Diefficiency Metrics: Measuring the Continuous Efficiency of Query Processing Approaches

4. QFed

5. K. Alexander, R. Cyganiak, M. Hausenblas and J. Zhao, Describing linked datasets – On the design and usage of void, the vocabulary of interlinked datasets, in: Linked Data on the Web Workshop (LDOW 09), in Conjunction with 18th International World Wide Web Conference (WWW 09), Vol. 538, 2010.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3