Irony detection in Twitter with imbalanced class distributions

Author:

Hernández Farías Delia Irazú1,Prati Ronaldo2,Herrera Francisco3,Rosso Paolo4

Affiliation:

1. División de Ciencias e Ingenierías Campus León, Universidad de Guanajuato, Mexico

2. Universidade Federal do ABC, Brazil

3. Department of Computer Science and Artificial Intelligence, University of Granada, Spain

4. Universitat Politècnica de València, Spain

Abstract

Irony detection is a not trivial problem and can help to improve natural language processing tasks as sentiment analysis. When dealing with social media data in real scenarios, an important issue to address is data skew, i.e. the imbalance between available ironic and non-ironic samples available. In this work, the main objective is to address irony detection in Twitter considering various degrees of imbalanced distribution between classes. We rely on the emotIDM irony detection model. We evaluated it against both benchmark corpora and skewed Twitter datasets collected to simulate a realistic distribution of ironic tweets. We carry out a set of classification experiments aimed to determine the impact of class imbalance on detecting irony, and we evaluate the performance of irony detection when different scenarios are considered. We experiment with a set of classifiers applying class imbalance techniques to compensate class distribution. Our results indicate that by using such techniques, it is possible to improve the performance of irony detection in imbalanced class scenarios.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference20 articles.

1. Classification with Class Imbalance Problem: A Review;Ali;Intertional Journal Of Advances In Soft Computing And Its Applications,2015

2. A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data;de Almeida Prado Alves Batista;ACM Sigkdd Explorations Newsletter,2004

3. SMOTE: Synthetic Minority Oversampling TEechnique;Chawla;Journal of Artificial Intelligence Research,2002

4. Fernández A. , García S. , Galar M. , Prati R.C. , Krawczyk B. and Herrera F. , Learning from imbalanced data sets, Springer, (2018).

5. Learning from Imbalanced Data;He;IEEE Transactions on Knowledge and Data Engineering,,2009

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3