#Brexit: Leave or remain? the role of user’s community and diachronic evolution on stance detection

Author:

Lai Mirko1,Patti Viviana1,Ruffo Giancarlo1,Rosso Paolo2

Affiliation:

1. Dipartimento di Informatica, Università degli Studi di Torino, C.so Svizzera 185, Turin, 10149, Italy

2. PRHLT Research Center, Universitat Politècnica de València, Camino de Vera s/n. Valencia, 46022, Spain

Abstract

Interest has grown around the classification of stance that users assume within online debates in recent years. Stance has been usually addressed by considering users posts in isolation, while social studies highlight that social communities may contribute to influence users’ opinion. Furthermore, stance should be studied in a diachronic perspective, since it could help to shed light on users’ opinion shift dynamics that can be recorded during the debate. We analyzed the political discussion in UK about the BREXIT referendum on Twitter, proposing a novel approach and annotation schema for stance detection, with the main aim of investigating the role of features related to social network community and diachronic stance evolution. Classification experiments show that such features provide very useful clues for detecting stance.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference17 articles.

1. Fast unfolding of communities in large networks;Blondel;Journal of Statistical Mechanics: Theory and Experiment,2008

2. Mutually enhancing community detection and sentiment analysis on twitter networks;Deitrick;Journal of Data Analysis and Information Processing,2013

3. Duranti A. and Goodwin C. , Rethinking context: Language as an interactive phenomenon, Cambridge University Press, (1992).

4. Evans A. , Stance and identity in Twitter hashtags, Language@ Internet 13(1) (2016).

5. Community detection in graphs;Fortunato;Physics Reports,2010

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3