System construction of deep learning AI cloud service mode

Author:

Lin Chunhua

Abstract

Deep learning (DL) is the basis of many applications of artificial intelligence (AI), and cloud service is the main way of modern computer capabilities. DL functions provided by cloud services have attracted great attention. At present, the application of AI in various fields of life is gradually playing an important role, and the demand and enthusiasm of governments at all levels for building AI computing capacity are also growing. The AI logic evaluation process is often based on complex algorithms that use or generate large amounts of data. Due to the higher requirements for the data processing and storage capacity of the device itself, which are often not fully realized by humans because the current data processing technology and information storage technology are relatively backward, this has become an obstacle to the further development of AI cloud services. Therefore, this paper has studied the requirements and objectives of the cloud service system under AI by analyzing the operation characteristics, service mode and current situation of DL, constructed design principles according to its requirements, and finally designed and implemented a cloud service system, thereby improving the algorithm scheduling quality of the cloud service system. The data processing capacity, resource allocation capacity and security management capacity of the AI cloud service system were superior to the original cloud service system. Among them, the data processing capacity of AI cloud service system was 7.3% higher than the original cloud service system; the resource allocation capacity of AI cloud service system was 6.7% higher than the original cloud service system; the security management capacity of AI cloud service system was 8.9% higher than the original cloud service system. In conclusion, DL plays an important role in the construction of AI cloud service system.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3