Abstract
From the perspective of practical development, under the premise of stable macroeconomic growth in society, influenced by spatiotemporal factors, regional economies inevitably have differences and changes, which affect various aspects of social production and life. In order to understand the spatiotemporal data evolution characteristics of regional economy, promote common regional development and the implementation of coordinated economic development strategies, this article takes the Beijing Tianjin Hebei (BTH for short here) region as an example. By combining spatial econometric models (SEM for short here), this article collects and processes economic development data from 2013 to 2022 in the BTH region, and introduced a spatial weight matrix to conduct High-performance computing and analysis of its regional economic spatial correlation. Based on this, this article conducted in-depth research on the spatiotemporal data evolution characteristics of the BTH regional economy through the description and quantitative analysis of the influencing factors of the BTH regional economy. The empirical analysis results showed that the global Moran index (Global Moran’s for short here) of the BTH region was positive from 2013 to 2022, and the Z-values were all greater than 1.96, indicating a significant spatial correlation in the BTH regional economy. There is an imbalance in economic development in the BTH region, but with the continuous development of the region, its economic balance has improved.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software